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Numerical Analysis of Pulse Broadening in
Graded Index Optical Fibers

KATSUMI MORISHITA, MEMBER, IEEE

Abstract— A scalar multilayer approximation method for calculating the
impulse response of multimode optical fibers from measured refractive-
index profiles is described. A comparison is made between shapes of
measured pulses and calculated pulses.

I. INTRODUCTION

UCH EFFORT has been expended on designing
multimode optical fibers that will have sufficient
information-carrying capacity. However, manufactured
fibers have various impulse responses and bandwidths be-
cause of departures of the index profile from its optimum
shape. If the group velocity and attenuation of each propa-
gation mode are calculated from measured refractive-index
profiles, the impulse responses and fiber bandwidths can
be predicted. Furthermore, on the basis of the knowledge
of the group velocity and attenuation, we can splice actual
fibers to reduce the pulse broadening in the spliced fibers.
It is the purpose of this paper to describe a method for
calculating the impulse responses of multimode optical
fibers from measured refractive-index profiles. For this
purpose, Marcuse [1] proposed a computational method
which is based on the WKB theory and Okamoto [2]
presented a method using the finite element analysis. In the
present paper, a practical method using the scalar multi-
layer approximation and the integral expression for the
group velocity {3] is described. The group velocity and
attenuation of every mode are computed by this method,
and impulse responses are predicted. The calculated im-
pulse responses are compared with the measured ones for
on-axis and off-axis excitations. The good agreement found
between theory and experiment demonstrates an ability to
predict pulse broadening in fibers having general index
profiles.

II. SCALAR MULTILAYER APPROXIMATION
ANALYSIS

Since exact analysis for graded index optical fibers is
difficult and time-consuming, appropriate approximation
techniques have been developed. Among them, scalar ap-
proximation analysis is one of the most widely used tech-
niques. The accuracy of scalar approximation technique in
optical fiber analysis was investigated in detail [4], [5]. The
error due to the scalar approximation is thought to be
sufficiently small for calculating impulse responses in mul-
timode optical fibers.
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Fig. 1. Muiltilayer approximation of the refractive-index profile. The

core radius is a.

It is assumed that the permittivity € of the fiber depends
only upon the distance r from the axis, and the permeabil-
ity is equal to that of vacuum p,. Applying the scalar
approximation conditions into Maxwell’s equations, we get
the following scalar wave equation:
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where B is a propagation constant of the guided mode,
transverse Cartesian components of the electromagnetic
fields, ie., E,, E, H, and H,, are expressed as
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The refractive-index profile in the core region is repre-
sented approximately by a stratified multilayer structure,
as shown in Fig. 1. The scalar wave equation in the ith
layer can be expressed as

d¢ 1d¢
e o=t (3)

where k= /€;tg , and n, represents the refractive-index of
the ith layer. The foregoing equation is solved exactly, and
the propagation constant 8 and the field distribution ¢ are
determined so that ¢ and d¢ /dr are continuous across the
discontinuity boundary r=a,.

The solutions of (3) are represented by Bessel functions,
and ¢ and d¢/dr in the ith layer (a,_; <r<a;) are ex-
pressed as
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where 4, and B, are unknown coefficients, Z,, and Z,, are
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signified as follows:

) Z(wr)=J,(ur), Z,(ur)=N,(ur), for u?=
kn2 — B2 >0, _

ii) Z,(u,r)=14u;r), Z,(u,r)=K,(u;r), for —u,-2 =
kn? — B2 <0,

Let us now derive the relation between unknown coeffi-
cients (A4, B,) and (4;_,, B,_). In the i—1th layer (a,_,
<r=<a;_,), ¢ and d¢/dr are written as

¢ Z,(u;_r)

_l_d_(p - ul 1 U1 ]
B dr —=Z,(u,_,r) 8 ,Zm(”i—lr)

Zm(ui—lr) A

i~1

B,

(5)
Using that ¢ and d¢/dr are continuous across the discon-
tinuity boundary r=a, _,, we can get the following equa-
tion:

Z (uiat—l) Z_m(uxat-—l) Az
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(6)
The relation between (A,, B,) and (A4,_,, B,_,) is derived
from (6) as follows:

HREr )

where
Z,(u,a;_y) Z(wa;_,) |7
" v Gma,)
Z,(u,_,a,_,) Z,(4;a,_)
% u’lglzl(ui—lai——l) %_—lzln(“i—la;—l) .

(3

By using (7), the unknown coefficients in the ith layer
(A,, B,) can be expressed in terms of the coefficients in the
first layer (A;, B,) as follows:

B =P_ P, P B, 9)

1

Since the electromagnetic field ¢ is finite at r=0 and oo,
the coefficients B,, 4, , must satisfy

B,=0 Ay,,=0. (10)

The relation between coefficients in the first layer and the
cladding (the N+ 1th layer) is derived from (9) and (10) as

follows:
0 A
=p| ! 11
[BNH] [ 0 } ()
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where
Py P 12]
P= =PyPy_, P, 12
{PM P22 NEN-1 1 ( )
In order that nontrivial solutions of (11) exist
P,=0 (13)

must be satisfied. The propagation constants can be de-
termined by the eigenvalue equation (13), and the coeffi-
cients (4;, B;) can be obtained from (9).

The group velocity V, obtained by the scalar approxima-
tion method is expressed as {3]

® 2
,E__li foqardr \
C k o d(kn) " (14)
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where C is the velocity of light in vacuum. The refractive-
index in multilayer approximation analysis is constant in
each layer. Therefore, the expression for the group velocity,
(14), can be rewritten in the form

21
;(n2-n A%)I )
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Qo™

where

Iizfa' {AiZm(u,.r)+B,.Zm(u,r)}2rdr.

a1
Since the integration I, can be analytically obtained as
shown in the Appendix and the coefficients (4,, B,) are
given by (9), the group velocity V, is determined by using
(15) without numerical integration.

Assuming that all guided modes propagate indepen-
dently from each other and suffer only the attenuation due
to bulk loss from absorption and Rayleigh scattering, the
attenuation constant a,, of the propagation mode M is
approximately represented as

ay=3 22 (16)

where P, expresses the power fraction in the ith layer of
mode M, P,, is the total power of mode M, i.e., Py, =2, Py,
and a, is the bulk loss in the ith layer. Using (15) and (16),
the power of mode M at propagation distance L, P,,(L),
the delay time per fiber length L of mode M,r,,, the
average delay time per fiber length L, 7, and the rms
pulsewidth, o, are given by

Py (L)=Pypemk

(17)

W= )
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Fig. 2. Refractive-index profile from [6].
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Fig. 3. Bulk loss distribution as a function of radius ».
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Fig. 4. Differential mode attenuation as a function of the normalized
principal mode number.

where Py, and V,,, are the incident power and the group
velocity of mode M, respectively.

III. NUMERICAL RESULTS

The shape of the impulse response, the total loss, and the
rms pulsewidth are computed from the refractive-index
profile shown in Fig. 2, and are compared with the mea-
sured results. The coupling length of the fiber with the
profile shown in Fig. 2 is several tens of kilometers [6].
Since the propagation distance (L=1048 m) of pulses in
this measurements is much shorter than the coupling length,
mode coupling is assumed to be negligible.

In this numerical analysis, the refractive-index profile is
divided into 25 layers. Assuming that the bulk loss of each
layer is shown in Fig. 3, the differential mode attenuation,
which is similar to the typical measurement results [7], is
computed, as shown in Fig. 4. Since the fiber is fabricated
by modified chemical vapor deposition of GeO,-doped
fused silica, it is considered that the absorption loss is
small and about the same in core and cladding. Hence, it is
presumable that the Rayleigh scattering approximately in-
creases with the distance from the axis in the core and is a
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Fig. 5. Group delay as a function of the normalized principal mode

number.

little greater on the vicinity of the axis because of the index
fluctuations caused by the collapsing process.

Material dispersion of GeO,-doped fused silica is ap-
proximately expressed as

dn _ dn2 n,
AdA‘AdA 1+A kamhp (21)
dX

where n, is the refractive-index of pure silica, A is the
refractive-index difference, and P is given by

A dA
P=3ax
From the measurement results of Malitson [8] and Presby
et al. [9], (21) is given at A=0.83 pm as follows:

dn _
)\(—ﬁ\- =—0.0134(1+4.1A).

The group delay of each propagation mode is computed by
using (23) and Fig. 2, and is shown in Fig. 5. Since the
group delay approximately decreases with the principal
mode number, the index profile shown in Fig. 2 turns out
not to be optimum. To obtain the optimum power-law
refractive-index fiber made of GeO,-doped fused silica, the
exponent of power-law profile must be made larger than
the exponent (a=1.84) of the fiber shown in Fig. 2. For
the practical use of the fiber shown in Fig. 2, it had better
be spliced with the fiber in which the group delay increases
with the principal mode number in order to equalize group
delay differences.

The calculated and experimental impulse responses are
compared. Fig. 6 shows the impulse responses measured
with a semiconductor pulse laser at A=0.83 pm. The input
pulse is shown in Fig. 6(a). Output pulses for on-axis and
off-axis excitations are shown in Fig. 6(b) and Fig. 6(c),
respectively. Assuming that Fig. 7 shows input modal
power distributions for on-axis and off-axis excitations,
output pulses at propagation distance L= 1048 m are com-
puted as shown in Fig. 8. The calculated pulsewidth and
pulse shape for each excitation show good agreement with
the measurement results. The calculated pulsewidths are a
little narrower than the measured ones because of ignoring
broadening of the pulse carried by each mode.

Computing the rms pulsewidth and the pulse shape
requires approximately 11 min of running time on the

(22)

(23)
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IV. CoNCLUSIONS

A method for calculating the impulse responses of multi-
mode optical fibers from measured refractive-indéx profiles
is described. A comparison is made between shapes of
measured pulses and calculated pulses. This method that
, . includes the effect of dispersive properties of core and
() cladding glasses and the modal power distribution has

mames  given good predictions of the output pulse shape. It has
become evident that this computation method is one of the
most practical methods to predict fiber bandwidth from
measured refractive-index profiles.

APPENDIX

2
me(ur)zrerrz—{Zm(ur)z— n1(ur)Z +1(ur)}
‘ (A1)
where Z, (ur) expresses J,, (ur) N, (ur), I,(ur), ot K, (ur).

me( ur )N, (ur)rdr

© : | {21 (ur)N,(ur) =y (ur )N, (ur)
Fig. 6. Input and output pulses from [6]. Vertical scale is arbitrary -
Time scale is 500 ps/div. (a) Input pulse. (b) Output pulse for on-axis _ .
excitation. (c) Output pulse for off-axis excitation. ‘ m+1(ur )N —1(ur )} (A2)

fIm(ur)Km(ur)rdr
ACOS-900(NEC) computer for the measured fiber which
has about 400 propagation modes. In this analysis, when
refractive-index profiles are divided into N layers, it takes

N times the computer time for the calculation of each ‘
eigenvalue. + 1, (ur)K,,_(ur)}. (A3)

= %2 {21 (uwr)K,(wr)+1,_(ur)K,,  (ur)
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Characteristics of Unilateral Fin-Line
Structures with Arbitrarily Located Slots

L. P. SCHMIDT, TATSUO ITOH, SENIOR MEMBER, IEEE, AND HOLGER HOFMANN

Abstract— Generalized unilateral fin-line configurations for extended
millimeter-wave applications are analyzed using the equivalent transmis-
sion-line concept in the spectral domain. Numerical results for the
frequency-dependent propagation constants and characteristic impedances
of various structures are presented.

I. INTRODUCTION

IN-LINE STRUCTURES have proved to be a useful
tool for the development of integrated millimeter-wave
components (e.g., [1]). Conventional fin-line structures pro-
posed to date are the unilateral, bilateral, and the antipodal
fin-line [2], all of which are symmetric with respect to the
E-plane of the shielding waveguide.
In order to improve the flexibility of this class of wave-
guiding structures and, thus, extending the range of appli-
cation and increasing the possible degree of integration,
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Fig. 1.

this paper analyzes more general types of unilateral fin-lines
with up to three slots in symmetric as well as asymmetric
positions (Fig. 1(a)).

This analysis includes the solution of the eigenvalue
problem yielding the frequency-dependent propagation
constants as well as the calculation of carefully defined
characteristic impedances. Numerical results will show the
improved flexibility that can be achieved by making use of
this extended class of fin-line structures.
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