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Numerical Analysis of Pulse Broadening in
Graded Index Optical Fibers

KATSUMI MORISHITA, MEMBER, IEEE

,4 bstract— A scalar multilayer approximation method for calculating the

impulse response of multimode optical fibers from measured refractive-

iudex profiles is described. A comparison is made between shapes of

measured pulses and calculated pulses.

I. INTRODUCTION

M UCH EFFORT has been expended on designing

multimode optical fibers that will have sufficient

information-carrying capacity. However, manufactured

fibers have various impulse responses and bandwidths be-

cause of departures of the index profile from its optimum

shape. If the group velocity and attenuation of each propa-

gation mode are calculated from measured refractive-index

profiles, the impulse responses and fiber bandwidths can

be predicted. Furthermore, on the basis of the knowledge

of the group velocity and attenuation, we can splice actual

fibers to reduce the pulse broadening in the spliced fibers.

It is the purpose of this paper to describe a method for

calculating the impulse responses of multimode optical

fibers from measured refractive-index profiles. For this

purpose, Marcuse [1] proposed a computational method

which is based on the WKB theory and Okamoto [2]

presented a method using the finite element analysis. In the

present paper, a practical method using the scalar multi-

layer approximation and the integral expression for the

group velocity [3] is described. The group velocity and

attenuation of every mode are computed by this method,

and impulse responses are predicted. The calculated im-

pulse responses are compared with the measured ones for

on-axis and off-axis excitations. The good agreement found

between theory and experiment demonstrates an ability to

predict pulse broadening in fibers having general index

profiles.

II. SCALAR MULTILAYER APPROXIMATION

ANALYSIS

Since exact analysis for graded index optical fibers is

difficult and time-consuming, appropriate approximation

techniques have been developed. Among them, scalar ap-

proximation analysis is one of the most widely used tech-

niques. The accuracy of scalar approximation technique in

optical fiber analysis was investigated in detail [4], [5]. The

error due to the scalar approximation is thought to be

sufficiently small for calculating impulse responses in mul-

timode optical fibers.
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Fig. 1. Multilayer approximation of the refractive-index profile. The
core radius is a.

It is assumed that the permittivity c of the fiber depends

only upon the distance r from the axis, and the permeabil-

ity is equal to that of vacuum PO. Applying the scalar

approximation conditions into Maxwell’s equations, we get

the following scalar wave equation:

where fi is a propagation constant of the guided mode,

transverse Cartesian components of the electromagnetic

fields, i.e., EX, EY, HX, and HY, are expressed as

(2)

The refractive-index profile in the core region is repre-

sented approximately by a stratified multilayer structure,

as shown in Fig. 1. The scalar wave equation in the i th

layer can be expressed as

where k=um, and n, represents the refractive-index of

the i th layer. The foregoing equation is solved exactly, and

the propagation constant ~ and the field distribution @are

determined so that $ and d~/dr are continuous across the

discontinuity boundary r= al.

The solutions of (3) are represented by Bessel functions,

and @ and d@/dr in the ith layer (ai–, <r< ai) are ex-

pressed as

where Ai and B, are unknown coefficients, Z~ and ~w are
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signified as follows:
i) Z~(~ir)=./~(uLr)~ zm(u,r)=Nm(u,r), for u; =

k2n~–~2>0.

ii) ZJz4ir)=1n(uir), 2Ju, r)= KJuir), for – u? =

k2n~–f12<0.

Let us now derive the relation between unknown coeffi-

cients (A,, B,) and (Ai_l, B,_l). In the i– lth layer (ai_z

<r< ai_ 1), @and d$/dr are written as

[ 1[

+ Zm(ui-,r) ~Jui-lr) 1[1Ai-l

1 d+ = ~zL(uz.l~).—
/3 dr *?Z2(”i-lr) ‘i-l “

(5)

Using that @ and d@/dr are continuous across the discon-

tinuity boundary r= al_ ~, we can get the following equa-

tion:

The relation between (Az, B, ) and (A,_,, B,_, ) is derived

from (6) as follows: - “

where

~_l=

(7)

1Zn(%lal-l) Zm(Uj–,U1–~ )

X Uj–~ ,
)

ui–~ —,
—ZJui_la,_l‘Z.(ui–la~–1 P

B 1

~.

(8)

By using (7), the unknown coefficients in the ith layer

(A,, B,) can be expressed in terms of the coefficients in the

first layer (Al, B1 ) as follows:

[1Ai [1Al
=<_, <_ ’””” P, B .

B, 1
(9)

Since the electromagnetic field @ is finite at r= O and ce,

the coefficients B,, AN+, must satisfy

B1=O A~+l=O. (lo)

The relation between coefficients in the first layer and the

cladding (the N+ 1th layer) is derived from (9) and (10) as

follows:

E+J=P[$I (11)

where

[

p= Pll P12

P’, P22

349

=PNPN_, . . P,, (12)

In order that nontrivial solutions of (11) exist

P,*=Q (13)

must be satisfied. The propagation constants can be de-

termined, by the eigenvalue equation (13), and the coeffi-

cients (Ai, Bi) can be obtained from (9).

The group velocity P’gobtained by the scalar approxima-

tion method is expressed as [3]

where C is the velocity of light in vacuum. The refractive-

index in multilayer approximation analysis is constant in

each layer. Therefore, the expression for the group velocity,

(14), can be rewritten in the form

VT

where

Since the integration 1, can be analytically obtained as

shown in the Appendix and the coefficients (A,, B,) are

given by (9), the group velocity V~ is determined by using

(15) without numerical integration.

Assuming that all guided modes propagate indepen-

dently from each other and suffer only the attenuation due

to bulk loss from absorption and Rayleigh scattering, the

attenuation constant a~ of the propagation mode M is

approximately represented as

(16)

where PM, expresses the power fraction in the i th layer of
mode M, PM is the total power of mode M, i.e., PM = XiPM,,

and ai is the bulk loss in the i th layer. Using (15) and (16),

the power of mode M at propagation distance L, PM(L),

the delay time per fiber length L of mode M, r~, the

average delay time per fiber length L, 7, and the rms

pulsewidth, u, are given by

PM(L) =PoMe-a~~ (17)

L
~’. —

vgM

; {~d’kf(~)}

7= 2PM(L)
M

(18)

(19)
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Fig. 2. Refractive-index profile from [6].
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Fig. 3. Bulk loss distribution as a function of radius r,
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Fig. 4. Differential mode attenuation as a function of the normalized

pnncipaf mode number.

where POM and VgM are the incident power and the group

velocity of mode M, respectively.

III. NUMERICAL RESULTS

The shape of the impulse response, the total loss, and the

rms pulsewidth are computed from the refractive-index

profile shown in Fig. 2, and are compared with the mea-

sured results. The coupling length of the fiber with the

profile shown in Fig. 2 is several tens of kilometers [6].

Since the propagation distance (L= 1048 m) of pulses in
this measurements is much shorter than the coupling length,

mode coupling is assumed to be negligible.

In this numerical analysis, the refractive-index profile is

divided into 25 layers. Assuming that the bulk loss of each

layer is shown in Fig. 3, the differential mode attenuation,

which is similar to the typical measurement results [7], is

computed, as shown in Fig. 4. Since the fiber is fabricated

by modified chemical vapor deposition of Ge02 -doped

fused silica, it is considered that the absorption loss is

small and about the same in core and cladding. Hence, it is

presumable that the Rayleigh scattering approximately in-

creases with the ‘distance from the axis in the core and is a
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Fig. 5. Group delay as a function of the normalized principal mode

number.

little greater on the vicinity of the axis because of the index

fluctuations caused by the collapsing process.

Material dispersion of Ge02 -doped fused silica is ap-

proximately expressed as

where n? is the refractive-index of pure silica, A is the

refractiv&index difference, and P is given by

p– ~ d’
AdA”

(22)

From the measurement results of Malitson [8] and Presby

et al. [9], (21) is given at A= O.83 pm as follows:

A~=–0.0134(1 +4.lA). (23)

The group delay of each propagation mode is computed by

using (23) and Fig. 2, and is shown in Fig. 5. Since the

group delay approximately decreases with the principal

mode number, the index profile shown in Fig. 2 turns out

not to be optimum. To obtain the optimum power-law

refractive-index fiber made of Ge02 -doped fused silica, the

exponent of power-law profile must be made larger than

the exponent (a E 1.84) of the fiber shown in Fig. 2. For

the practical use of the fiber shown in Fig. 2, it had better

be spliced with the fiber in which the group delay increases

with the principal mode number in order to equalize group

delay differences.

The calculated and experimental impulse responses are

compared. Fig. 6 shows the impulse responses measured

with a semiconductor pulse laser at A =0.83 pm. The input
pulse is shown in Fig. 6(a). Output pulses for on-axis and

off-axis excitations are shown in Fig. 6(b) and Fig. 6(c),

respectively. Assuming that Fig. 7 shows input modal

power distributions for on-axis and off-axis excitations,

output pulses at propagation distance L= 1048 m are com-
puted as shown in Fig. 8. The calculated pulsewidth and

pulse shape for each excitation show good agreement with

the measurement results. The calculated pulsewidths are a

little narrower than the measured ones because of ignoring

broadening of the pulse carried by each mode.

Computing the rms pulsewidth and the pulse shape

requires approximately 11 min of running time on the
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(a)

(b)

(c)

Fig. 6. Input and output pulses from [6]. Vertical scale is arbitrary.

Time scafe is 500 ps\div. (a) Input pulse. (b) Output pulse for on-axis
excitation. (c) Output pulse for off-axis excitation.

ACOS-900(NEC) computer for the measured fiber which

has about 400 propagation modes. In this analysis, when

refractive-index profiles are divided into N layers, it takes

N times the computer time for the calculation of each

eigenvalue.

Frhcipal Mc& Number

Fig. 7. Input modal power distribution. _ on-axis excitation;
-------- off-axis excitation.
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Fig. 8. Calculated output pulse. _ on-axis excitation; --------
off-axis excitation.

IV. CONCLUSIONS

A method for calculating the impulse responses of multi-

mode optical fibers from measured refractive-index profiles

is described. A comparison is made between shapes of

measured pulses and calculated pulses. This method that

includes the effect of dispersive properties of core and

cladding glasses and the modal power distribution has
given good predictions of the output pulse shape. It has

become evident that this computation method is one of the

most practical methods to predict fiber bandwidth from

measured refractive-index profiles.

APPENDIX

J02Z~ ur rdr= ~ {Z~(ur)2–Z~_l(tir) Z~+l(tw)}

(Al)

where ZJ w ) expresses Jn( ur), NJ ur ), IJ w ), or KJ zw).

JJm(@Lof+dr

=~ {2Jm(ur)Nm(ur)-Jm-l(ur)~m+l(ur)

–J~+l(ur)N~_l(ur)} (A2)

~IJur)KJur)rdi-

= ~ {21~(ur)KJur)+lw_ l(ur)K~+1(ur)
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Characteristics of Unilateral Fin-Line
Structures with Arbitrarily Located Slots

L. P. SCHMIDT, TATSUO ITOH, SENIOR MEMBER, IEEE, AND HOLGER HOFMANN

A fmtract— Generalized unilateral fin-line configurations for extended ‘1

millimeter-wave applications are analyzed using the equivalent transmis- 1
sion-line concept in the spectral domain. Numerical results for the o-d

frequency-dependent propagation constants and characteristic impedances

of various structures are presented.

L

I. INTRODUCTION

F IN-LINE STRUCTURES have proved to be a useful ?

tool for the development of integrated millimeter-wave 20

components (e.g., [1]). Conventional fin-line structures pro-

posed to date are the unilateral, bilateral, and the antipodal

fin-line [2], all of which are symmetric with respect to the
1

E-plane of the shielding waveguide.

In order to immove the flexibility of this class of wave-
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guiding structure: and, thus, extending the range of appli-
F1g. 1. Generalized undateral fin-line (a) cross section, (b) equivalent

trausmlssion lines for TM-to-v and TE-to-y waves
cation and increasing the possible degree of integration,

this paper analyzes more general types of unilateral fin-lines

with up to three slots in symmetric as well as asymmetric
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